Reversible ADP-ribosylation is demonstrated to be a regulatory mechanism in prokaryotes by heterologous expression.

نویسندگان

  • H Fu
  • R H Burris
  • G P Roberts
چکیده

The primary product of biological nitrogen fixation, ammonia, reversibly regulates nitrogenase activity in a variety of diazotrophs by a process called "NH4(+)-switch-off/on." Strong correlative evidence from work in Azospirillum lipoferum and Rhodospirillum rubrum indicates that this regulation involves both the inactivation of dinitrogenase reductase by dinitrogenase reductase ADP-ribosyltransferase and the reactivation by dinitrogenase reductase activating glycohydrolase. The genes encoding these two enzymes, draT and draG, have been cloned from these two organisms, so that direct genetic evidence can be marshaled to test this model in vivo. The draT/G system has been transferred to and monitored in the enteric nitrogen-fixing bacterium Klebsiella pneumoniae, an organism normally devoid of such a regulatory mechanism. The expressed draT and draG genes allowed K. pneumoniae to respond to NH4Cl with a reversible regulation of nitrogenase activity that was correlated with the reversible ADP-ribosylation of dinitrogenase reductase in vivo. Thus, the expression of draT and draG genes in K. pneumoniae is necessary and sufficient to support NH4(+)-switch-off/on, and ADP-ribosylation serves as a reversible regulatory mechanism for controlling nitrogenase activity in prokaryotes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of P(II) and its homolog GlnK on reversible ADP-ribosylation of dinitrogenase reductase by heterologous expression of the Rhodospirillum rubrum dinitrogenase reductase ADP-ribosyl transferase-dinitrogenase reductase-activating glycohydrolase regulatory system in Klebsiella pneumoniae.

Reversible ADP-ribosylation of dinitrogenase reductase, catalyzed by the dinitrogenase reductase ADP-ribosyl transferase-dinitrogenase reductase-activating glycohydrolase (DRAT-DRAG) regulatory system, has been characterized in Rhodospirillum rubrum and other nitrogen-fixing bacteria. To investigate the mechanisms for the regulation of DRAT and DRAG activities, we studied the heterologous expre...

متن کامل

ALTERATIONS OF ADP-RIBOSYLATION AND DNA-BREAKS IN AGING BRAIN CELLS

Neuronal and astroglial cells were prepared from whole brain of three month and 30-month- old rats for study of alterations in the nuclear poly ADP-ribosylation and DNA breaks with age. The relative purity of the cell preparations was confirmed by the determination of the neurofilament (low molecular weight) and glutamine synthetase content of the cells using ELISA. An increase (75%) in th...

متن کامل

The Toxin-Antitoxin System DarTG Catalyzes Reversible ADP-Ribosylation of DNA

The discovery and study of toxin-antitoxin (TA) systems helps us advance our understanding of the strategies prokaryotes employ to regulate cellular processes related to the general stress response, such as defense against phages, growth control, biofilm formation, persistence, and programmed cell death. Here we identify and characterize a TA system found in various bacteria, including the glob...

متن کامل

The structure of human ADP-ribosylhydrolase 3 (ARH3) provides insights into the reversibility of protein ADP-ribosylation.

Posttranslational modifications are used by cells from all kingdoms of life to control enzymatic activity and to regulate protein function. For many cellular processes, including DNA repair, spindle function, and apoptosis, reversible mono- and polyADP-ribosylation constitutes a very important regulatory mechanism. Moreover, many pathogenic bacteria secrete toxins which ADP-ribosylate human pro...

متن کامل

Regulation of transcription factor NFAT by ADP-ribosylation.

ADP-ribosylation is a reversible posttranslational modification mediated by poly-ADP-ribose polymerase (PARP). The results of recent studies demonstrate that ADP-ribosylation contributes to transcription regulation. Here, we report that transcription factor NFAT binds to and is ADP-ribosylated by PARP-1 in an activation-dependent manner. Mechanistically, ADP-ribosylation increases NFAT DNA bind...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 87 5  شماره 

صفحات  -

تاریخ انتشار 1990